US006959346B2

United States Patent

(12) (10) Patent No.: US 6,959,346 B2
Low et al. @#5) Date of Patent: Oct. 25, 2005
(54) METHOD AND SYSTEM FOR PACKET FOREIGN PATENT DOCUMENTS
ENCRYPTION WO WO 0052881 A 8/2000
(75) TInventors: Arthur John Low, Chelsea (CA); OTHER PUBLICATIONS
Stephen J. Davis, Nepean (CA)
Atsushi Inoue et al., ‘Secure Mobile IP Using IP Security
(73) Assignee: MOSAID Technologies, Inc., Kanata Primitives’, [EEE Xplore 1997.*
(CA) “Security Architecture for the Internet Protocol”, RFC Stan-
dard Track, http://www.ietf.org/rfc/rfc2401.txt, (Nov.,
(*) Notice: Subject to any disclaimer, the term of this 1998).
patent is extended or adjusted under 35 “IP Encapsulating Security Payload (ESP)” RFC Standard
U.S.C. 154(b) by 467 days. Track, http://www.ietf.org/rfc/rfc2406.txt, (Nov., 1998).
. .
(21) Appl. No.: 09/741,829 cited by examiner
. Primary Examiner—Jeffrey Gaffin
(22) Filed: Dec. 22, 2000 Assistant Examiner—Niketa 1. Patel
(65) Prior Publication Data (74) Antorney, Agent, or Firm—Hamilton, Brooks, Smith &
Reynolds, P.C.
US 2002/0087708 Al Jul. 4, 2002
57 ABSTRACT
(51) Int. CL7 oo GO6F 3/00
(52) US.Cl oo, 710/50; 710/52; 710/61; A data processor and a method for processing data is
713/150; 713/153 disclosed. The processor has an input port for receiving
(58) Field of Searchcccccoeeeeee 710/50, 52, 61; packets of data to be processed. A master controller acts to
713/150, 153 analyse the packets and to provide a header including a list
processes to perform on the packet of data and am ordering
(56) References Cited thereof. The master controller is programmed with process

U.S. PATENT DOCUMENTS

5,524,250 A 6/1996 Chesson et al. 395/775
5,548,646 A * 8/1996 713/153
5,708,836 A 1/1998 Wilkinson et al. 395/800
5,742,930 A * 4/1998 HOWILt ...ceeeevvvreeeennene 704/502
5,825,891 A * 10/1998 Levesque et al. 713/153
6,088,800 A 7/2000 Jones et al. «..cceeueeenneee 713/189
6,449,656 B1 * 9/2002 FElzur et al. ...ccccceeeennee 709/236
6,484,257 Bl * 11/2002 EILS .ccovevvveeerenrreeennnnnne 713/153
6,505,192 B1 * 1/2003 Godwin et al. 707/3
6,604,147 Bl * 8/2003 W00c.ueee... .. 709/240
6,606,706 Bl * 8/2003 Li ..cceevvveveeerevereeeennnene 713/162
6,636,966 Bl * 10/2003 Lee et al. ..ccoveureeennne 713/165
6,704,866 B1 * 3/2004 Benayoun et al. 713/151
6,732,315 B2 * 5/2004 Yagil et al. 714/755

related data relating to the overall processing function of the
processor. The header is appended to the packet of data. The
packet with the appended header information is stored
within a buffer. A buffer controller acts to determine for each
packet stored within the buffer based on the header within
the packet a next processor to process the packet. The
controller then provides the packet to the determined pro-
cessor for processing. The processed packet is returned with
some indication that the processing is done. For example,
the process may be deleted from the list of processes. The
buffer controller repeatedly makes a determination of a next
process until there is not next process for a packet at which
time it is provided to an output port.

20 Claims, 12 Drawing Sheets

51

Resource : -
Manager 1‘ SPB
P | Agent

! | SPB !
! ‘ Agent '
4 o 'y 4 '
Va o ¢5P [vSP
Qs < Client Specific] C“ei: Specifi|
L s ent !
72 - e A%ent % n ‘
3" | Element Specific Interface Element Specific Interface
74— —
- Application Specific Generic Processing
75— Processing Element Element

US 6,959,346 B2

Sheet 1 of 12

Oct. 25, 2005

U.S. Patent

14V HOd

¢ Ol

1YINHO43d

a

d0SS300¥d Ade HLIM SS300dd

_

d40SS3008d ANZ HL1IM SS300dd

|

d0SS300¥d 1Sdld HLIM SS300dd

|

13IAJVd FAI303Y

1Y HOIdd
l "©Old
R AARY JOVIS JOvLs J9V1S JOv.LS
INIT3dId INIT13dld INIT3dId INIT3dId J. 3INIT3AdId Nw
|] :
gl ¥l
J
ol

US 6,959,346 B2

Sheet 2 of 12

Oct. 25, 2005

U.S. Patent

14>
i

14>
/

€ Ol

129
/

IREIERE
ONISS300dd

IN3N33
ONISS300dd

INIW3T3
ONISS3ID0¥d

d344n4d
v.iva

14
/

I EERE]
ONISSID0¥d

H3T10H1INOD
d344N8

/
L€

¥344nd HOSS3IO0Ud
1NdLNO YILSYIN
/ /
9¢ ce

U.S. Patent Oct. 25, 2005 Sheet 3 of 12 US 6,959,346 B2

Receive packet

Insert header

Provide packet to buffer

Determine next processor to
process data

Provide packet to processor

Reformat data

Fig. 4

U.S. Patent Oct. 25, 2005 Sheet 4 of 12 US 6,959,346 B2

gA
Cs,
o
A V!
oh
-

S3

o
&
—
m ™
L
e
8
™ :
% A-
)
.
/ =
7
[ap!
Ve

Cl1

53
>

Data 3 DI

US 6,959,346 B2

Sheet 5 of 12

Oct. 25, 2005

U.S. Patent

9 "314

"CIEP PAYTPOUL PUR [BUISLIO S|OJIUOD JOJNQ BIR(T

‘uonerado owyder3oidLrd e saxoaur
JEL} UOTIOR 01U oes 107 papraod og jsnur uoyewiogur Suikoy

"B1Rp
PRIBIOOSSE 3} UO SILIUD [043UOD BY} UL POPOD SPULWILIOD SY) uLioiad
O} SJUAUID[O [01UOD ALI3UAT o) Aq paxmbai suononasur sy s1apoyn

"SSLIUS [OJU0D 3y} OJul yoeq paoe|d
S1e Uoneuogul uona[dwos pue sopoo) nsal ‘Bjep J[Nsal 181 0) MOy
Pue B1ep paydseye uo pauiiojiad og 03 uonerado Ajnuapr ssug [0nuo’)

"UoIeuLIOj U
gunjoe) pue Juiwn sapraoid pue jaxoed Iadng sarynuopl Jopeal]

9Jng
vIR(]

U AQY)

0 Aoy

u oponn

0 spoDn

u Anu4 |jonuo))

0 Anug [onuo))

1pedy

US 6,959,346 B2

L 314
O TUSWA[SuIssa001y \w\\am L
Surssa001 oLrouon) dyadg uoyeorddy
VL
SoryIeIU] SIyIoads Juswalq aoelIeu] oy10adg Juowiog +— s N

=
s I e e - . =
) __. 1 | \\\\\\
3 | , g - -TL
2 w a3y J_.l_‘\J \4 \

!

| , |
10 |
=4 !
M, « Jo3euey
S B 90IN0SY
< Z e

IS

U.S. Patent

IL

US 6,959,346 B2

Sheet 7 of 12

Oct. 25, 2005

U.S. Patent

8 3]
UoeInuAYINY uondAiourg uonendruepy
SAN-96DVINH sHag | 1OpBOL]]
»/ » @ bR A s
© \ ‘68 \ O, \ ©
98 I8
e
JuIS$0001] SU1s$5001
<+ S84 < \ layngy 1o Jodng - m.mohwﬁmA*

®

IOAIDS
@ 038l @

VAN

8

US 6,959,346 B2

Sheet 8 of 12

Oct. 25, 2005

U.S. Patent

(357084 d1)
BIR(]

b £33

¢ Aoy

9 apoOn

¢ apoHn

v opoon

£apoon

¢9poDn

9 [01U0))

G [0HU0)D)

£ [onuo))

€ |01U0))

7 [01u0))

19pBaH dS

| 9poDn

[Jonuo))

B6 "SI

A
dAOWY

TDAIDG

A"
995d1

PPV

(3o30rd d])
ele(q

[apoDn

®

[[0nUo))

I9pedy JsS

3U1S$2001]
SsaI3U]

@

<
WAISAS

slojug

(1e30ed dI)
eleq

US 6,959,346 B2

Sheet 9 of 12

Oct. 25, 2005

U.S. Patent

BIIBL] dSH

oRd] -
‘padAug

BPea[] 45
TPEIIT

S|

9 3poHn

§ dpoon

¥ 9pon

—€9PON

~Topoon

0 [00U0)

G JOTU0)

7 J04t0)

—E 00y

T [0Tu0)

I9PBAH dS

q6 'S4

uondAioug
Sddg

®

a10dwos Fuissavoad sojeorpur yorey ssoi))

PIRILL dSH

1% dI

ToPeaH dSH

IOPBA d]

7 A

¢ ADY

9 apo)n

G opopn

F epon

¢ 9poDn

_¢epopn

0 JOT0)

S JoNuo)

¥ JOT0))

¢ Joquo))

7 000

BPeSH a9

N

1oyt dI

v A

¢ Ay

9 9poDHn

§ 2popn

v 2poDn

¢ apopn

Z apoHn

9 OU0))

¢ [oLu0)

uone|ndrugn

J2peaH dJI

T Jonuo))

¢ 101300

©

T 10900y

T9PE3H (S

US 6,959,346 B2

Sheet 10 of 12

Oct. 25, 2005

U.S. Patent

.wni:mprr &mmm

royorg dI
pardAioury

TOPEH dSi

19PEH d]

pASY

LAY -

9 ochs

- §9poon .
T opoon

¢ epoon

. PpoDn

9 JoNu0y

SO0y

% TOTquoy)

om0y

AN

I9pPEIH dS

96 'S

JVINH

B[IeI] S

10y dl

paydAioury

BPYH 45

ISpESH dl

o1ojdwod Jurssadoid sajedrpul yojey SSoID

AN

Ay

c ocoQ:

§ 2popn

—HOpOON_

_£9p0oT

Tz opoon

9 [0DT0))

S oNT0)

uonendiurf

J1opeoy 29541

P 100U05)

~LTOTN0)) |

O

NN

JOpPEeAH dS

.HDM,:NHH mﬁm—

Ezomm n:
voabomu

SERTETR mmu

15pesH d[

uoneONUAYINY
SAN-96O0VINH

©

i A

LAY

9 2poDn

< apoHyn

7 SpoDn

€9poDn_

PO

9 JONUOy

¢ [onuo))

7 JO1u0))

TEToIuo)

NALIAE

I9peaH dS

US 6,959,346 B2

Sheet 11 of 12

Oct. 25, 2005

U.S. Patent

pe 31

JOAIDG
998dI

uonadwo)

P10y
-

PR

ERSE

_99poon

_59poon

T Opogn

~T3pon

T2popn

, @ TOIU0Y)

SO0 ~

,, Eeﬁoo)

g oTu0y

Z JONT00y

JTOPpeaH dS

R[] dSd

eyoed dI
_uoabocm

U<§I +
Honmmm mvm

J9PESH dI

A

aedwos Juissanold soredipul yoyey ssoi))

1ofTel], 454

; Egmm&
n&gboﬁ@)

Svﬁm n_wm\

1opesH dl

P ASY

9 2poon

G 9poOn -

- £9popn

T apoon

g [00U0)

AN

[C¢onuo)

<- _ J
|
|
|
|
|
I
|
Bu1ss2001]
CwoIsAy S$S2137]
SOARA

©

T [onuoYy-

J9PeoH d$§

US 6,959,346 B2

Sheet 12 of 12

Oct. 25, 2005

U.S. Patent

d40SS300udd
d3IAY3AS

0l 9lId
¥0SS3I00Yd ¥0SS3ID0Yd Y0SS3ID0Nd |
/ / /
HOLIMS Z0l zZol 20l
ONISS3IHAayY
1Nd1no
HOSSIO0O™d
/ HOSS3ID0¥d H0SSID0Ud HOSS3ID0Hd []
v01 001
/ / i
Zol Zol Zol
H0OSS3ID0Hd H0SS3ID0Hd H0OSSIDONd -
/ / /
Z0l zZol 201

/
901

US 6,959,346 B2

1

METHOD AND SYSTEM FOR PACKET
ENCRYPTION

FIELD OF THE INVENTION

The invention relates generally to processor architectures
and more specifically to a flexible architecture for process-
ing of serial data.

BACKGROUND OF THE INVENTION

Before the advent of the Internet, corporate data networks
typically consisted of dedicated telecommunications lines
leased from a public telephone company. Since the hardware
implementation of the data networks was the exclusive
property of the telephone company, a regulated utility hav-
ing an absolute monopoly on the medium, security was not
much of a problem; the single provider was contractually
obligated to be secure, and the lack of access to the switch-
ing network from outside made it more or less resistant to
external hacking and tampering.

Today, more and more enterprises are discovering the
value of the Internet which is currently more widely
deployed than any other single computer network in the
world and is therefore readily available for use by a multi-
national corporate network. Since it is also a consumer-level
product, Internet access can usually be provided at much
lower cost than the same service provided by dedicated
telephone company network. Finally, the availability of the
Internet to the end user makes it possible for individuals to
easily access the corporate network from home, or other
remote locations.

The Internet however, is run by public companies, using
open protocols, and in-band routing and control that is open
to scrutiny. This environment makes it a fertile proving
ground for hackers. Industrial espionage is a lucrative busi-
ness today, and companies that do business on the Internet
leave themselves open to attack unless they take precau-
tions.

Several standards exist today for privacy and strong
authentication on the Internet. Privacy is accomplished
through encryption/decryption. Typically, encryption/
decryption is performed based on algorithms which are
intended to allow data transfer over an open channel
between parties while maintaining the privacy of the mes-
sage contents. This is accomplished by encrypting the data
using an encryption key by the sender and decrypting it
using a decryption key by the receiver. In symmetric key
cryptography, the encryption and decryption keys are the
same, whereas in public key cryptography the encryption
and decryption keys are different.

Types of Encryption Algorithms

Encryption algorithms are typically classified into public-
key and secret key algorithms. In secret-key algorithms,
keys are secret whereas in public-key algorithms, one of the
keys is known to the general public. Block ciphers are
representative of the secret-key cryptosystems in use today.
A block cipher takes a block of data, for example 32-128
hits, as input data and produces the same number of bits as
output data. The encryption and decryption operations are
performed using the key, having a length typically in the
range of 56—128 bits. The encryption algorithm is designed
such that it is very difficult to decrypt a message without
knowing the exact value of the key.

In addition to block ciphers, Internet security protocols
also rely on public-key based algorithms. A public key
cryptosystem such as the Rivest, Shamir, Adelman (RSA)

10

15

20

25

30

35

40

45

50

55

60

65

2

cryptosystem described in U.S. Pat. No. 5,144,667 issued to
Pogue and Rivest uses two keys, one of which is secret—
private—and the other of which is publicly available. Once
someone publishes a public key, anyone may send that
person a secret message encrypted using that public key;
however, decryption of the message can only be accom-
plished by use of the private key. The advantage of such
public-key encryption is private keys are not distributed to
all parties of a conversation beforehand. In contrast, when
symmetric encryption is used, multiple secret keys are
generated, one for each party intended to receive a message,
and each secret key is privately communicated. Attempting
to distribute secret keys in a secure fashion results in a
similar problem as that faced in sending the message using
only secret-key encryption; this is typically referred to as the
key distribution problem.

Key exchange is another application of public-key tech-
niques. In a key exchange protocol, two parties can agree on
a secret key even if their conversation is intercepted by a
third party. The Diffie-Hellman exponential key exchange
method, described in U.S. Pat. No. 4,200,770, is an example
of such a protocol.

Most public-key algorithms, such as RSA and Diffie-
Hellman key exchange, are based on modular
exponentiation, which is the computation of o* mod p. This
expression means “multiply o by itself x times, divide the
answer by p, and take the remainder.”This is very compu-
tationally expensive to perform for the following reason: In
order to perform this operation, many repeated multiplica-
tion operations and division operations are required. Tech-
niques such as Montgomery’s method, described in “Modu-
lar Multiplication Without Trial Division,” from
Mathematics of Computation, Vol. 44, No. 170 of April
1985, can reduce the number of division operations required
but do not overcome this overall computational expense. In
addition, for present day encryption systems the numbers
used are very large (typically 1024 bits or more), so the
multiply and divide instructions found in common CPUs
cannot be used directly. Instead, special algorithms that
break down the large multiplication operations and division
operations into operations small enough to be performed on
a CPU are used. These algorithms usually have a run time
proportional to the square of the number of machine words
involved. These factors result in multiplication of large
numbers being a very slow operation. For example, a
Pentium® processor can perform a 32x32-bit multiply in 10
clock cycles. A 2048-bit number can be represented in 64
32-bit words. A 2048x2048 bit multiply requires 64x64
separate 32x32-bit multiplication operations, which takes
40960 clocks on the Pentium® processor assuming no
pipeline processing is performed. An exponentiation with a
2048-bit exponent requires up to 4096 multiplication opera-
tions if done in the straightforward fashion, which requires
about 167 million clock cycles. If tile Pentium processor is
running at 166 MHZ, the entire operation requires roughly
one second. Of course, the division operations add further
time to the overall computation times. Clearly, a common
CPU such as a Pentium cannot expect to do key generation
and exchange at any great rate.

Because public-key algorithms are so computationally
intensive, they are typically not used to encrypt entire
messages. Instead, private-key cryptosystems are used for
message transfer. The private key used to encrypt the
message, called the session key, is chosen at random and
encrypted using a public key. The encrypted session key and
the encrypted message are then sent to the other party. The
other party uses its private key to decrypt the session key,

US 6,959,346 B2

3

and then the message is decrypted using the session key. A
different session key is used for each communication, so that
if security of a session key is ever breached, only the one
message encrypted therewith is accessible. This public-key/
private-key method is also useful to protect continuous
streams of data within communications, such as interactive
terminal sessions that do not terminate in normal operation
or that continue for extended periods of time. Preferably in
this case, the session key is periodically changed by repeat-
ing the key exchange technique. Again, frequent changing of
the session key limits the amount of data compromised when
security of the session key is breached.

PRIOR ART

Network-level encryption devices, allowing access to
corporate networks using a software-based solution are
experiencing widespread usage. Products typically perform
encryption entirely in software. The software complexity
and processor speed limit throughput of such a system. Also,
session key generation using public-key techniques is time
consuming and is therefore undertaken only when necessary.
Software does have advantages such as ease of modification
and updating to encryption algorithms implemented thereby.

Other available devices use a combination of hardware
and software in order to provide encryption. For example,
the Entrust Sentinel X.25 encryption product uses a DES
(Data encryption standard) chip produced by AMD® to
perform DES symmetric-key encryption. Hardware imple-
mentations of the DES algorithm are much faster than
software implementations, since DES was designed for
efficient implementation in hardware and dedicated hard-
ware solutions are known to be more efficient. A transposi-
tion that takes many central processing unit (CPU) instruc-
tions on a general purpose processor in execution of
software are done using parallel special-purpose look up
tables.

The Sentinel also makes use of a Motorola DSP56000®
processor to perform public-key operations. When designed,
support of single-cycle multiplication by the digital signal
processor (DSP) made this processor significantly faster
than regular complex instruction set computers (CISC)
MICroprocessors.

Most hardware encryption devices arc severely limited in
the number of algorithms that they support. For examples
the AMD chip used in the Sentinel performs only DES.
More recent devices from Hi/Fn can perform DES and RC4.
However, other standard algorithms such as RC5 sand IDEA
require use of another product.

It would be advantageous to provide a flexible processor
architecture for supporting encryption and other processing
of data within a data stream.

OBJECT OF THE INVENTION

In order to overcome these and other limitations of the
prior art it is an object of the invention to provide a flexible
processor architecture for supporting encryption and other
processing of data within a data stream.

SUMMARY OF THE INVENTION

In accordance with the invention there is provided a data
processor for processing data comprising an input port for
receiving packets of data; at least a port for communication
with each of a plurality of processors: a first processor in
communication with the at least a port and for processing
received data to provide a header including a list of pro-
cesses to perform on the packet of data and an ordering
thereof, the header stored within a packet of data to which
the header relates; a buffer for storing data received from the

10

15

20

25

30

35

40

45

50

65

4

at least a port; a buffer controller for determining based on
the header within a packet a next processor of the plurality
of processors to process said data packet and for providing
said data packet to the at last a port for provision to the next
Processor.

In accordance with another embodiment of the invention
there is provided a data processor for processing data
comprising a buffer for storing data; a plurality of special
purpose processors, each for processing data from within the
buffer; a buffer controller in communication with each
special purpose processor, for determining a next processor
of the special purpose processors to process the data, and for
providing the data to the determined next processor.

In accordance with yet another embodiment there is
provided a data processor for processing a packet of data
comprising an addressing network; a plurality of special
purpose processors, each for processing data received via the
addressing network and for providing processed data to the
addressing network, the addressing network interconnecting
the plurality of special purpose processors; a first processor
for providing data for use in directing a packet of data
through the addressing network to a plurality of processors
one after another in a predetermined order, the data associ-
ated with the packet wherein different packets are provided
with different data for directing them differently through the
addressing network and wherein each special purpose pro-
cessor is for performing a function absent knowledge of the
overall high level packet processing operation.

In accordance with another aspect of the invention there
is provided a method for processing stream data comprising
receiving stream data including packets of data at an input
port; processing received data packets to provide for each a
header including a list of processes to perform on the packet
and an ordering thereof, the header stored within the packet
to which the header relates; providing the packet with the
associated header to a buffer for storage; for each packet
within the buffer:

determining based on the header within the packet a next

processor to process the packet;

providing the packet to the determined next processor for
processing, and

receiving the processed packet from the processor and
storing it in the buffer, the stored packet including one
of an indication that processing by the next processor is
complete and that no processing by the next processor
is required; and,

when no further processes are indicated in a header of a
packet, providing the packet to an output port.

In accordance with yet another aspect of the invention
there is provided an architecture for processing data com-
prising:

a first processing element for receiving data and for
formatting the data with a list of processes selected
from available processes and an ordering thereof, the
list of processes for being performed on the data;

further processors for performing at least one process
from the available processes; and,

a routing memory for providing data to processors for
performing the processes according to the ordering of
the listed processes.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described with reference to the
drawings in which like reference numerals refer to similar
items and in which:

FIG. 1 is a prior art block diagram of a pipeline processor
for processing of data;

US 6,959,346 B2

5

FIG. 2 is a simplified flow diagram of a method for
processing a packer using the pipeline processor of FIG. 1;

FIG. 3 is, a simplified architectural diagram of an embodi-
ment of the present invention;

FIG. 4 is a simplified flow diagram of a method according
to the invention:

FIG. 5 is a simplified block diagram of a processor
architecture according to the invention;

FIG. 6 is a data structure diagram for a super packet;

FIG. 7 is a simplified block diagram of a processor
architecture according to the invention;

FIG. 8 is a simplified block diagram of a processor
architecture accordingly to the invention;

FIGS. 94-9d is a data structure diagram for a super packet
throughout a processing operation being performed thereon;
and,

FIG. 10 is a simplified block diagram of a processor array
for use with an architecture according to the invention.

DETAILED DESCRIPTION OF THE
INVENTION

In data processing it is common that data is received in a
format commonly referred to as packets. A packet is a small
set of data including content data and classification data. The
classification data includes one or more of format data,
routing data, data type information, data classification,
packet grouping data, and so forth.

As each packet is received it is processed in accordance
with its classification data in order to act on the data in
accordance with requirements relating to that classification
of data.

An example of packet classification and processing
according to the prior art is now described with reference to
FIG. 1 and FIG. 2. In FIG. 1 is shown a simplified block
diagram of a serial pipeline processor. The processor is
shown with a single pipeline path 10 for processing data
received serially at a data input port 12. The data is classified
in a first stage of the pipeline 14. The classified data is then
routed to an appropriate next pipeline stage through address
lines 16. Examples of subsequent pipeline stages include
cipher processing, routine processors, etc.

Referring to FIG. 2, a simplified flow diagram of a method
of packet processing for a packet received at input port 12
is shown. The packet is received. It is classified to determine
a packet format. Here, the format is encrypted so the
encrypted packet data is provided to a cipher processor for
decryption. Once decrypted the plain text is stored in a data
buffer from which it is transferred to a destination process
such as a communication port of a personal computer.

Though the packet processor of FIGS. 1 and 2 is efficient
and makes use of parallel hardware based processors that are
typically optimised for performing a specific task, the pro-
cessor architecture is extremely inflexible. Each pipeline
stage requires knowledge of all immediately subsequent
pipeline stages in order to direct partially processed packets.
Also, some pipeline stages are fully utilised while others are
under utilised. Thus, efficiency is compromised. Finally each
packet follows a same path with some simple switching to
ensure that packets are not processed when there is no need
to do so.

Referring to FIG. 3, a simplified architectural diagram of
an embodiment of the present invention is shown. Here a
data buffer 30 is shown disposed central to a packet pro-
cessor. Abuffer controller 31 determines based on the header

10

15

20

25

30

35

40

45

50

55

60

65

6

within a packet, a next processor of a plurality of processors
to process data packets. The buffer controller 31 provides the
data packet to a port for provision to the next processor. A
master processor 32 acts to format each packet in order to
insert a header therein indicative of processes required for
processing that packet. The master processor 32 is program-
mable and understands the processing of packets at a high
level. Once the packet is reformatted, it is returned to the
data buffer 30 from which it is routed to a processing
element 34 for performing the first listed function. For
example, in the example of FIG. 2, the first function is
determining a format of the packet. The packet format is
determined and for each determined format a number of
possible functions may be added or removed from the list
within the header. For example, an encrypted packet may
have the function cipher added to it along with some form
of key identifier. The key identifier and the packet is then
provided to a cipher processor from the buffer 30. In the
cipher processor the packet is decrypted and the decrypted
packet is returned to the buffer 30. The buffer 30 continues
to provide the packet to processors as long as further
functions remain within the header. When the header is
empty, the packet is transferred to an output port for storage,
for example in a received data buffer 36. Alternatively, a last
function indicates the provision of the data to a data output
port.

Because of the central data buffer of FIG. 3, the number
and type of processors is easily varied, upgraded, expanded
and so forth. Each time a new function is supported, the
master processor is reprogrammed to know of the new
function and appropriate packets for which to list the pro-
cess.

Advantageously, only the master processor inserts func-
tions within a header. As such, only the master processor
needs to capture data relating to packet processing and only
the master processor requires reprogramming when the
processing method or capabilities are changed.

Referring to FIG. 4, a simplified flow diagram of a method
according to the invention is shown. Here, a packet is
received. The master processor inserts a header indicative of
classification, cipher processing, combining packets, and
providing the combined data to the data output port. The
buffer then receives the formatted packet and provides it to
a classification processor that strips out classification data
within the packet and replaces it with a known classification
code. The packet is then returned to the buffer. The returned
packet has the classification step removed therefrom either
by removing the function from the header or by indicating
the function as completed. The classified packet is than
provided to a processor for ciphering. The cipher processor
decrypts the packet data and returns the clear text packer to
the buffer. The clear text packet is now provided to a
combining processor that detects the packet classification
information to determine if it is part of a segmented larger
packet and combines it with those segments of the larger
packet that are already in the combiner. When the larger
packet is complete, it is returned to the buffer and then
provided to the output data port.

As is clear to one of skill in the art, the use of such an
architecture greatly facilitates updating the processor
capabilities, programming, and power. For example, a new
cipher processor is easily added. The new resource is
identified to the buffer as a cipher processor to allow the
buffer to send packets having a cipher function required to
the new processor. Similarly, a classification processor can
be upgraded or changed without affecting the processor.

Also, the core processor according to the inventive archi-
tecture comprises a buffer and a master processor. The

US 6,959,346 B2

7

master processor is programmable to allow for upgradable
and flexible packet processing. The buffer is capable of
recognising and interfacing with a plurality of different
dedicated processors. Of course, when desired, the dedicated
processors are included within a same integrated processor.

Referring to FIG. 5, a simplified architectural diagram of
a processor according to the invention is shown. A super
packet buffer 51 is in communication with a plurality of data
elements 52. The data elements 52 are for providing data to
the super packet buffer 51 and for receiving data from the
super packet buffer 51. Though the data element D1 is
shown for providing and the data element D2 is shown
receiving data, data elements 52 optionally support bidirec-
tional communication with the super packet buffer (SPB) 51.

The SPB is also in communication with a plurality of
processors. Processors 53 provide data processing including
determining further processing required for a data packet.
Processors 54 are referred to as client processors and per-
form data processing on packets that are received. Typically
client processors 54 are dedicated to a single form of
processing that is self contained and can be performed on a
packet in isolation. Cipher processing is one such process.
Thus, a DES encryption engine typically forms a client
processor for receiving data, for encrypting the data, and for
returning the encrypted data to the SPB.

Each communication port is typically controlled by a
driver process in execution within the SPB 51. For example,
a driver process for a DES encryption engine would typi-
cally strip the header from a packet and provide the data to
be encrypted by the processor along with key data in the
form of a key or of a key identifier. The DES processor then
processes the data and returns the processed data to the
driver process which reinserts the header data, indicates the
DES processing as completed, and passes the packet back to
the SPB 51. The use of driver processes allows for use of
non-proprietary processing elements—legacy processors—
for performing dedicated tasks. The use of driver processes
also allows for system maintainability and upgradability.

Referring to FIG. 6, an exemplary super packet data
structure is shown. The super packet comprises a header, an
ordered list of operations, data relating to the operations, key
data, and packet data. The header provides data used for
identifying the super packet and for tracking of same.
Optionally, the header also includes auditing information for
use in monitoring performance, debugging, security audits,
and other functions wherein a log is useful.

The control entries include a list of processes—
functions—required for the data within the data buffer.
These processes are generally listed in a generic fashion
such that the super packet buffer routes the super packet to
any of a number of available processors for performing said
function. Some functions require data, which is stored either
following each function identifier or in a separate set or
fields within a super packer. For example, a cipher processor
may require an indication of which of encrypt/decrypt to
perform. Key data is stored in a subsequent set of field and
typically identifies keys by identifier instead of storing
within the actual super packets. Finally, the data to be
processed is included within the super packet.

Referring to FIG. 7, an architectural diagram of another
embodiment of the invention is shown. Here, a resource
manager 71 maintains information on resource availability
and so forth while agents 72 in execution within the super
packet buffer 51 operate to provide super packets to pro-
cessors 75 in accordance with their headers. Client specific
agents 73 act as part of the driver process and communicate

10

15

25

35

40

45

50

55

60

65

8

with the agents 72 to determine data that will be suitably
processed by the client 75. Once the client 75 is determined,
the remainder of the driver process 74 act to format the data
for receipt by the client 75.

Referring to FIG. 8, a simplified architectural diagram of
a processor for use in supporting Internet protocol security
(IPSEC) processing is shown. The process of data reaching
a processor having an architecture according to the invention
is shown in FIGS. 94-9d. The data element 81 performs
ingress processing of data prior to providing the data in the
form of a super packet of data to the super packet buffer 51.
The super packet of data includes a header indicative of a
single process—that of the server processor 82 for process-
ing the data packet. The super packet is the provided to the
IPSEC server 82 where it is converted into a super packet
more indicative of correct processing. The IPSEC server 82
is the only processor that has knowledge of the overall
process being performed on each incoming data packet. All
other processors perform their single function absent knowl-
edge of how it fits into the global scheme.

The super packet is returned to the super packet buffer 51
from the server processor 82. Once there, the super packet
is provided to the client processor 83 for IP header manipu-
lation. The data within the data buffer is shown (FIG. 9b)
with IP header information and encapsulated security pay-
load (ESP) leader information therein. The process, control
2, is then marked as performed and the super packet is
returned to the super packet buffer 51. The next process is
that process indicated by control 3, 3DES Encryption. Client
84 provides this functionality. The super packet is provided
to client 84 where, as shown in FIG. 9b encryption is
performed and the function control 3 is marked as having
been performed. The next function to be performed is
HMAC96-MD5 Authentication. Client 85 performs this
function. The super placket is provided to the client 85
where, as shown in FIG. 9c, Hashed Message Authentication
Code (HMAQC) is added to the data within the buffer. The
super packet is returned to the super packet buffer 51 once
the function is marked as having been performed.

The next function is control 5, which requires IPSEC
Header Manipulation. The client 83 is capable of performing
this function as well as the function of control 2. The super
packet is provided to the client 83 where the data is
reformatted as shown in FIG. 9c. Once again the function
control § is marked as having been performed and the super
packet is returned to the super packet buffer. Finally, the
remaining function relates to egress processing performed
by data element 86 and the results of which are shown in
FIG. 9d. The super packet is stripped of its header leaving
a processed packet of data for communication. Optionally,
the stripped header information is provided to the server for
use in real-time monitoring or performance and logging of
performance data.

As is evident to those of skill in the art, only server is
provided with data relating to the overall process. Replace-
ment of the cipher processor client 84 with a new version of
the cipher processor has virtually no impact on the overall
architecture or the system. Though the server 82 needs to
know steps for carrying out the process, these steps are high
level and the server 82 need not understand anything relating
to 3DES, IP Header manipulation or HMAC.
Advantageously, instead of replacing a client processor a
new client processor is simply added to the system to
provide more than one client processor for a single task.

Though the architecture is described with reference to a
modular embodiment, the entire processor architecture may

US 6,959,346 B2

9

be implemented wit in a single integrated circuit. Preferably,
the integrated circuit provides an interface for external
processors to allow for future dedicated modules and appli-
cation specific data processing client modules.

Of course, when a single group of processing functions is
performed sufficiently many times in a same order, it is
preferable to group those functions into a single client
processor. For example, encryption is a plurality of different
functions that are grouped. When an amount of IPSEC
packet processing required equivalent to the entire through-
put of each client processor required, an IPSEC packet
processor including the same functional elements arranged
in a pipeline is preferably used as a client processor to the
super packet buffer. In this way, much of the SPB overhead
is eliminated. Of course, the flexibility to use the client
processors for other processing operations is lost so, when
resource usage is less than a maximum resource usage, it is
often preferable to maintain a more flexible architect.

Alternatively, a single pipeline processor is provided with
a plurality of input ports for providing access to the complete
pipeline or to a single, underutilised, processor forming part
of the pipeline processor. Of course, such an embodiment
adds significant complexity to the pipeline processor and
therefore is considered less desirable than using separate
client processors or a dedicated function pipeline processor
as described above.

In accordance with another embodiment of the invention
as shown in FIG. 10, the server processor 106 stores within
the header switching information for use in switching the
super packet within an array of processors 106. A packet is
directed from the server processor 106 to a first processor
100 for processing. The header and the packet data are
separated so as to not affect processing of the data. When the
data is processed, header data is provided to an output
addressing switch 104 and the super packet data is auto-
matically routed in a pseudo pipelined fashion to a subse-
quent processing element. Such an embodiment reduces
flexibility, expandability, functionality and so forth while
adding to the overall hardware complexity. That said, the
performance of such an embodiment is likely superior to the
more flexible architecture described above and in many
applications the lack of flexibility and so forth is not
considered a great disadvantage.

Alternatively, since the super packet includes data relating
to individual processes, it is possible to encode therein
executable code for execution on the processor. As such a
general purpose processor is provided and when functions
outside the scope of the special purpose client processors is
required, executable code and the super packet is provided
to the general purpose processor for processing thereof.
Further alternatively, only a pointer to the code is provided
to reduce the overall super packet side.

In accordance with the diagrams, the invention is particu-
larly well suited to encryption functions wherein secret keys
are guarded single function modules to enhance overall
system security. The super packet buffer directs packets to
different modules as necessary to perform processing thereof
without compromising secret keys stored within those mod-
ules.

Numerous other embodiments may be envisaged without
departing from the spirit or scope of the invention.

What is claimed is:

1. A data encryption system comprising:

a control process which modifies a received packet to
include control data which includes a list of processes
to be performed on the packet;

a plurality of processors which perform the processes
identified by the control data, including an encryption
process;

10

15

25

30

35

40

45

50

55

60

65

10

an interconnection including a buffer controller which
responds to control data in the packet to determine a
processor of the plurality of processors dedicated for
processing a process in the list of processes and for-
wards the packet with control data to the determined
processor; and

an output from which the processed packet is forwarded
without the control data upon completion of the pro-
cesses in the list of processes.

2. The system as claimed in claim 1 wherein the inter-
connection comprises a packet buffer.

3. The system as claimed in claim 1 wherein the buffer
controller includes a resource manager which maintains
information on resource processor availability.

4. The system as claimed in claim 1 wherein the control
data includes code to be processed in at least one of the
processors.

5. The system as claimed in claim 1 wherein the control
data further includes an encryption or authentication key.

6. The system as claimed in claim 1 wherein individual
processors add result data to the control data.

7. The system as claimed in claim 1 wherein the proces-
sors perform IPSEC protocol processing.

8. The system as claimed in claim 1 wherein respective
processors perform IP header manipulation and encryption.

9. The system as claimed in claim 8 wherein a processor
performs authentication processing.

10. A method of encrypting or decrypting data packets
comprising:

modifying a received packet to include control data which

includes a list of processes to be performed on the
packet;

forwarding the packet from processor to processor
through an interconnection including a buffer controller
which responds to control data in the packets to deter-
mine a processor of the plurality of processors dedi-
cated for processing a process in the list of processes;
and

in successive processors, performing the processes iden-
tified by the control data, including an encryption or
decryption process.

11. The method as claimed in claim 10 wherein the
interconnection comprises a packet buffer.

12. The method as claimed in claim 10 wherein the buffer
controller includes a resource manager which maintains
information on resource processor availability.

13. The method as claimed in claim 10 wherein the
control data includes code to be processed in at least one of
the processors.

14. The method as claimed in claim 10 wherein the
control data further includes an encryption or authentication
key.

15. The method as claimed in claim 10 wherein individual
processors add result data to the control data.

16. The method as claimed in claim 10 wherein the
processors perform IPSEC protocol processing.

17. The method as claimed in claim 10 wherein respective
processors perform IP header manipulation and encryption.

18. The method as claimed in claim 17 wherein a pro-
cessor performs authentication processing.

19. The data encryption system of claim 1 wherein the
control process is executed by a master processor.

20. The data encryption system of claim 1 wherein the
packet processed by the determined processor is forwarded
to the buffer controller.

